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The potential drop across an imperfect 
diffusion bond 
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Oxford, UK 

In the non-destructive evaluation of diffusion bonds, a possible technique is to measure 
the potential drop for a given current flow. Using evidence from optical and acoustic 
microscopy, the geometrical details of an incomplete diffusion bond are represented by 
an idealized mathematical approximation. This is solved exactly using conformal mapping 
by a Schwarz transformation. The result for the change in resistance as a function of 
bond development is given as an analytic expression. 

1. Statement of problem 
In a companion paper [1 ], various methods for the 
non-destructive assessment of diffusion bonds are 
compared and evaluated. In all of  these an attempt 
is made to determine the true bonded area, since 
this is the dominant factor influencing the strength 
of the bond. The potential drop technique is 
already well established for measurements of 
fatigue crack growth [2, 3] and it has now been 
tried for monitoring diffusion bonds [1], though 
further refinement of the experimental technique 
is still required. 

In calculating the change in resistance due to 
incomplete bonding, the problem is formulated as 
follows. The surfaces to be bonded are ground, 
and then brought together with the grinding 
directions parallel. They are then pressed together 
at a pressure less than the yield stress and at a tem- 
perature less than the yield point, so that bond 
growth proceeds by diffusional processes [4]. In 
any bond where the diffusional processes are 
incomplete, a series of voids will remain corres- 
ponding to troughs left by the grinding process. 
These voids tend to be rather thin in the direction 
normal to the bonded interface and long in the 
direction parallel to the grinding marks. Perpen- 
dicular to the grinding marks, if the surface 
undulations can be given a characteristic wave- 
length, the voids are spaced at intervals corres- 
ponding to the wavelength, with a width of some 
fraction of the wavelength. In a well-prepared 

specimen the surface roughness is greater than the 
lack of flatness, so that the voids are of similar 
sizes and shapes over the whole of the bonded 
area. Some evidence from optical and acoustic 
microscopy to support these observations is pre- 
sented in the companion paper [1 ]. 

In order to make the problem tractable mathe- 
matically, the following approximations are 
introduced. First it is assumed that the voids are 
of length equal to the thickness of the specimen; 
this reduces the problem to two dimensions. 
Second, it is assumed that the voids are of infini- 
tessimal thickness; this simplifies the Schwarz 
transformation. They also have zero conductivity, 
so that no current flows through them. Third, it 
is assumed that the voids are of regular width and 
spacing, so that the problem is periodic. This des- 
cription is illustrated in Fig. 1. Since no current 
flows across the broken lines shown, the problem 
reduces to finding the change in resistance of one 
cell, and from this the resistance of the bond can 
be deduced. The final assumption is that the speci- 
men is of infinite length perpendicular to the bond. 
For simplicity, a bond of rectangular cross-section 
will be described, though the result will be valid 
for a bond of any cross-section. 

2. Analysis 
The problem is tackled by employing a conformal 
transformation [5]. This transforms the compli- 
cated boundary conditions of the given geometry, 
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Figure 1 The geometry of  the description of a diffusion 
bond used for the calculations. It consists of  a number  of  
identical cells in parallel, as indicated by the broken lines. 

taken in a complex plane, to another geometry for 
which the boundary conditions are simple. Since 
Laplace's equation is invariant under the transfor- 
mation, it may be applied to the transformed 
geometry and the solution then inverse-transformed 
to give the required result. 

Y 

2.1. The Schwarz transformation 
The required transformation is illustrated in Fig. 
2, where the points corresponding to A, B, C . . .  
in the z-plane are A1, B1, Cx . . .  in the za.plane. 
For z contained between the two boundaries 
(IRe zl ~<h), the fimit Im z -~ - o o  will map onto 
the origin of the zl plane, while the limit Im z -~ 
+ oo will map onto a semicircle of infinite radius in 
the upper half (vl I> 0) of the zl plane. The left- 
hand boundary of the material maps onto the 
negative Xl axis and the right-hand boundary onto 
the positive xl axis. 

With bends of ir[2, 2% ~T/2, 0, n/2, 2rr, rr[2 at 
zl = - - a ,  - -1 ,  --b,  0, b, 1, a, respectively, the 
Schwarz transformation between the two planes 
becomes < 

dz z~ - 1 
~-~ = ~ = f ( z l )  (1)  

z l  [(a ~ - z ~ ) ( z ~  - b ~ ) ]  , /2  

2. 1.1, Interpretation o f  the square root  
The terms in the denominator of Equation 1 are 
illustrated in Fig. 3. Since the square root is 
multivalued we make a precise interpretation of 
it from the start by 

{--R1R2R3R4 exp [i(r + Cz + ~3 + r }1/2 

= (R1R2R~R4) 1/2 

x exp [i(n + r + r + r + r (2) 

Yl 
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w B b. ..... 

IC < 2k ,) D 

2h 

' -  - )  X 

A1 B! C1 DI E1 F1 
, , t > XI 

z-plane zl-plclne 
Figure 2 The two complex planes z and z 1 . A cell of the diffusion bond in z is mapped to zl by the Schwarz trans- 
formation of  Equation 1. 
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Figure 3 The interpretation of the square 
root in the denominator of Equation 1. For 
z~ along the real axis, the square root takes 
the values indicated, where Mis the modulus. 

where the square root on the right is always taken 
as positive. Thus for z~ along the real axis, the 
square root takes the values indicated in Fig. 3. 

2. 1.2.  S i m p l e  r e l a t i o n s  b e t w e e n  c o n s t a n t s  

Simple relations between the constants a, b, c, h 
can be obtained from the requirements 

- h +  J~ 

J h+ i ~ d z  - -  2 h  

f 
r I = R , O  1 =it  

= l i tanY= Jr,=R,O]=o f(21) dZl" 

and 

. -h- i= 

J h-i= dz -~- - -  2h 

I 
;e I =/~, 01 =TT 

= limR-~0 r,=R,o,=o f(zOdzl. 

The two limits of  the integral on the right may be 
evaluated, after substituting from Equation 1, in 
an entirely equivalent manner to that used by 
Smythe [5] for the problem of a strip with an 
abrupt width change. This gives the result 

2h 
c = - - - - ,  ab = 1. (3) 

7r 

2 .2 .  T r a n s f o r m a t i o n  o f  t h e  integral  
The Schwarz transformation can now be expressed 
in the form 

2h r z~ -- 1 
z = - - - ~ - J  z,[(a 2 - z ~ ) ( z ~  - -  l/a2)] '/2 dzl 

+ constant. (4) 

If  we consider a change of  variable to 

s = [(a 2 --z21)(z~ - -  1/a2)]l/2/(z~ + 1) (5) 

where the square root is interpreted as in Equation 
2, then it is readily shown after some straightfor- 

2 3 5 6  

ward algebra that Equation 4 transforms to 

z = - -  + constant 
ff 

2h 
= - -  tan-is + constant. (6) 

rr 

Now, tan -] s has a cut in the s-plane as indicated in 
Fig, 4, and in performing the integration in 
Equation 6 this cut must not be crossed. But 
under the transformation of  Equation 5, it can be 
seen that the y~-axis for positive values of  Yl is 
mapped onto the cut of  tan -~ s. Particular values 
of  this mapping are 

Yl ~ 0+ , s -+ - - i l+ ;  Y l  ~ 1 - , s  - ~ - i ~ 1 7 6  

Yl -+oo, s - + +  i1+; Yi -+ l+,s ~ + i ~ 1 7 6  

where the superscripts indicate the direction from 
which a limit is approached. 

It is therefore necessary to carry out the 
integration in Equation 6 and the determination 
of  the constant of  integration independently for 

+ i  

U 

- i  

Figure 4 The cut in tan -~ s, shown in the s-plane. 



positive and negative values of  Re(z1) , and thus 
for the right and left hand halves of our original 
geometry, in order that the cut remain uncrossed 
and Equation 6 remain valid. Eventually the two 
solutions will have to be matched. 

2.2. 1. Evaluat ion  o f  the  integral  
Consider first the case of Re(z1) > 0. The Schwarz 
transformation was designed to have z = h when 
zl = a ,  which also corresponds, by Equation 5,' 
to s = 0 .  The constant in Equation 6 is thus 
evaluated as h. On the other hand, for Re(zx) < 0, 
we require z = - h  when zx = - -a ,  when again s = 
0. The constant of integration then becomes -- h. 
The transformation is thus 

2h 
z = - -  tan-is  -+h (7) 

with the sign of h corresponding to the sign of 
Re(z1). 

The constant a is as yet undetermined. This can 
be fixed by requiring that z = k when z 1 = 1. 
Substituting Equation 5 into Equation 6 gives 

k = 2 h  ( a 2 - l )  
- -  tan -~ + h 

which may be expressed alternatively in the form 

a = t a n a + s e c a ,  a = 1 - -  ~-. (8) 

The same result obtains using the requirement 
that z = -- k when zl = -- 1, and, of course, using 
Equation 7 in the appropriate form. 

2.2.2. Matching the solutions 
The Schwarz transformation is now fully deter- 
mined by Equations 7, 5 and 8. However, we 
expect that the transformation should be con- 
tinuous across the positive y,-axis of the za-plane. 
Thus the change in sign of the constant of  inte- 
gration in Equation 7, as zl crosses the positive 
yl-axis, must be compensated by the discontinuous 
change in tan -1 s as s crosses the cut in the s-plane. 
That this is indeed true may be shown as follows. 

With s specified as u + iv, the values of tan-~s 
near the cut may be obtained from 

1 {l+is 1 
limu-~0+ tan-a(s) = limu--,o• ~ l n \ - i - - - ~ s  ] 

1 +,2.1 
= lim._~o• ( l + v )  = + u  -~ ] .  (9) 

Then, writing the argument of the logarithm as 
t = Rexp(ir 

1 - - v  2 1 - v  

as u -~ 0 • , Re(t) -+ (1 + v) 2 1 + v 

and Ira(t) -+ 0 -+ . (10) 

Thus, for the uncut section of the imaginary axis 
( [ v [ <  1), Re(t) > 0, and so as Im(t)-+O -+ r  
We may then write 

limu__,o• tan- ' (s)  = In 1 + v] [vl < 1. 

(11) 

However, for the cut section of the imaginary axis 
(Iv[ > 1), Equation 10 shows that R e ( t ) <  0 and 
thus as Ira(t)-+ 0 +, then r ~ rr, while as Im(t)-~ 
0-, then r  since the cut in the logarithm 
consistent with the use of Equation 9 is along the 
negative real axis. Thus, 

limu-,o-+ tan-l(s) = + ~ +  1 in 1 - - v  
2 2i 

(12) 

Furthermore, one may show from Equation 5, 
that 

a s z t - + i y l + 0  +- t h e n s - ~ i v - O  +- 

and we have already seen that the positive imagin- 
ary axis in the zl-plane is mapped onto the cut in 
the s-plane by Equation 5. Thus taking the limit 
of Equation 7 as Zl approaches the positive 
imaginary axis from either side, 

2h 
limx I --,o• z = - -  limu~o~ tan-is + h 

7r 
(0 < y t  < oo) (Ivl > 1) 

2h [ ~ . ~ + l l n  1 - - v  +h 
zr 2 2i 

I, l = -- i - -  in . (13) 
7r 

Thus the solutions reach the same limiting value 
from each side of the cut. 

2.3. Determination of the differential 
resistance 

The method of determining the differential resis- 
tance is similar to that used by Smythe [5] for the 
differential resistance caused by an abrupt width 
change. That is, we require a solution of Laplace's 
equation which gives infinite positive and negative 
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potentials in the regions of the zl Plane corres- 
ponding to z -~ i oo (zl ~ i ~176 and z --> - i oo (zl -+ 
0), and which has no gradient across the real zl 
axis. If we write 

W = U + i V  

where U is the potential function, then such a 
solution is 

W = ln zl or zl = e w (14) 

Substituting this into Equation 5, and considering 
only points on the positive yl-axis, where V is 
equal to rr/2, gives 

s = iv = -- il{(a2 + e2U)[(1/a2)  + e2u] }v2l 
1 --  e 2tr 

(lS) 
again interpreting the square root by Equation 2. 

Then, in the limit U = U1 -+ 0% 

v = [e 2ut + ~ ( a  2 + 1/a2)]/[e  2U1 --1] (16) 

which from Equation 13 is obtained for a value 
o fy  given by 

y +  m h in ] l - v  I 

- -  o 

7r ~T 
(17) 

On the other hand, in the limit U =  U2-+-0% 

v = [1 + e2e2(a 2 + 1]a2)/2]/[ - 1 + e 2tr2] 

(18) 

which is obtained for a value o fy  given by 

h i n  1 - -v  �9 

= 2hU2 + 2h in/a2 + 1] (19) 
n n \ 2a ]" 

Combining Equations 17 and 19, 

= 7r 2 1 n { a 2 + l l  U1 -- U2 ~ (V.--y-) + \ ~ 1  (20) 

If the two-dimensional resistivity (i.e. the resistance 
between opposite sides of a unit square) of the 
conducting material is s', then Ohm's law may be 
written as [5] 

, IU~ - U l l  
R = s  

Iv2 - vii 

where V1 and 112 are the bounding lines of force, 
in this case 0 and rr, respectively. This gives 
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s' + 2 ;  In (21) R = 

The first term on the right is the resistance of a 
uniform strip. Therefore the change in resistance is 

/ , 

2s' 
In ( ~ 1  (22) AR , , 

f r  k za / 

This is essentially the result we have been seek- 
ing, and it may be immediately applied to the 
diffusion bond of Fig. 1. If the gross bond area is 
A and the resistivity of the material is p, then the 
change in resistance due to imperfect bonding, 
compared with the resistance of the same length 

i 

of uniform material, measured between planes 
parallel to the bond and a distance from it large 
compared with h, is 

&R 4hp ln(a2 + 1 t = gY (23) 

with 

where  

a = t a n a  + seca 

( o~= 1-- ~-. 

This result is plotted in dimensionless form in Fig. 
5. 

3. Discussion: the nearly Imrfeet bond 
The practical implications of this calculation are 
discussed in the companion paper [1], where the 
result is also plotted semi-logarithmically. We con- 
sider here the case of the nearly perfect bond, i.e. 
1 - - k / h ~  1. 

First, we find the slope of AR at the limit k = h 

o r = 0  

a = l  

hda 7r 

dk 2 
da 
- -  ----- s e c  20~ - -  s e c  o~ tan a 
do~ 

= 1  

\ - ~ a  ].1 - a(a 2 + 1) 

dAR 
. ' .  h 

dk 

= 0  

- 0 .  
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Figure 5 The change in resist- 
ance zXR of Equation 23, 
plotted in dimensionless form. 

This describes the fact that the slope in Fig. 5 is 
zero when 1 - - k / h  = 0. It means that the p.d. 
method rapidly loses sensitivity as a bond becomes 
more nearly perfect. This may not be as serious a 
practical limitation as it sounds, since bonds 
corresponding to k /h  = 0.8 can have almost 100% 
strength [ 1 ]. 

As k/h--> 1, the approximation that the voids 
are planar becomes less valid. As a better approxi- 
mation the voids might be considered to be of  
rectangular section, as shown in Fig. 6, with thick- 
ness 2l. Following an analysis similar to Section 2, 
the mapping is defined by 

dz  (z~ --a2)1/2(z 2 - - b 2 )  1/2 

- - c = )  (24) 

where 

2ik  
C 1 = + _ - -  

7r 

ab 
- -  = 1 

C 

-- 2il - C1 b2 (S - -a2)U:(s  -- b2) 1/2 
2 fa2 s ( s - -  1)1/2(8--c2) 1/2 

ds 

h - - k -  C1 ['e2 ( - - a  (--2~'s----2"l/2"------b2"l/-- 
ds 

2 Jb ~ s ( s - 1 ) l / 2 ( s - c 2 ) 1 / 2  

S "~- * ZI Z1 

The solution of  this mapping is left as an excercise 
for the interested reader! It will follow lines 
similar to those of  Section 2, though it will be 

more complicated. For h -  k >> l there will be 
little difference in the results; the chief new feature 
will be that for constant l the slope of  zXR will be 
non-zero at k = h. However, it would remain a 
matter of  discussion to what extent this would be 

gAAR 

A 

1 2z I 

2 h  . , -  

Figure 6 An alternative idealization o f  a diffusion bond  
in which the voids have finite thickness 2l. The Schwarz 
t ransformat ion for this geometry  is given in Equat ion 24. 
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a bet ter  mathematical  description of  a nearly 
perfect bond,  and for most practical purposes the 
result of  Section 2 is commended.  
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